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Chapter 1
Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will define
vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex numbers
are investigated along with real numbers. Thus we will begin by introducing the
complex numbers and their basic properties.

We will generalize the examples of a plane and of ordinary space to R” and
C”, which we then will generalize to the notion of a vector space. As we will see,
a vector space is a set with operations of addition and scalar multiplication that
satisfy natural algebraic properties.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).
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René Descartes explaining his work to Queen Christina of Sweden.
Vector spaces are a generalization of the description of a plane
using two coordinates, as published by Descartes in 1637.
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{ R" and C"

»mplex Numbers

u should already be familiar with basic properties of the set R of real numbers.

mplex numbers were invented so that we can take square roots of negative
mbers. The idea is to assume we have a square root of —1, denoted by i, that
2ys the usual rules of arithmetic. Here are the formal definitions.

A definition: complex numbers, C J

A complex number is an ordered pair (a,b), where a,b € R, but we will
write this as a + bi.

- The set of all complex numbers is denoted by C:
C={a+bi:abeR}.
Addition and multiplication on C are defined by

(a+bi)+ (c+di) = (a+c) + (b+d)i,
(a + bi)(c + di) = (ac — bd) + (ad + be)i;

here a,b,c,d € R. )
If a € R, we identify a + 0i with the real number a. Thus we think of R as a
»set of C. We usually write 0 + bi as just bi, and we usually write 0 + 17 as just i.
To motivate the definition of complex 7, symbol i was first used to denote

Itiplication given above, pretend that /77 4\  sonhard Euler in 1777.
knew that i = —1 and then use the

1al rules of arithmetic to derive the formula above for the product of two
nplex numbers. Then use that formula to verify that we indeed have

2 =—1.

Do not memorize the formula for the product of two complex numbers—you
1 always rederive it by recalling that i> = —1 and then using the usual rules of
‘hmetic (as given by 1.3). The next example illustrates this procedure.

2 example: complex arithmetic 1_

The product (2 + 37) (4 + 5i) can be evaluated by applying the distributive and
nmutative properties from 1.3:
(2+3i)(4+5i) =2 (4+50) + (3i)(4 + 5i)
=2-4+2-5i+3i-4+ (3i)(50)
8+10i +12i — 15
-7 + 22i.

Our first result states that complex addition and complex multiplication have
the familiar properties that we expect.

commutativity
a+p=p+aandap = Baforalle,p e C.

associativity
(@+B)+A=a+(B+A)and (af)A = a(BA) foralla, B, A € C.
identities
A+0=Aand Al = Aforall A € C.
_ additive inverse
For every a € C, there exists a unique § € C such that « + 8 = 0.
: EEEEB.H% inverse
 Forevery & € C with a # 0, there exists a unique 8 € C such that af = 1.
_distributive property
.,/ Ao+ B) = Aa+ A forall A,a,B € C.

W

The properties above are proved using the familiar properties of real numbers
and the definitions of complex addition and multiplication. The next example
shows how commutativity of complex multiplication is proved. Proofs of the
other properties above are left as exercises.

a example: commutativity of complex multiplication

To show that 8 = pa for all &, € C, suppose
a=a+bi and B =c+di,

where a,b,c,d € R. Then the definition of multiplication of complex numbers
shows that

(a + bi)(c + di)
(ac — bd) + (ad + be)i

ap

and

B = (c + di)(a + bi)
= (¢ca — db) + (cb + da)i.

The equations above and the commutativity of multiplication and addition of real
numbers show that aff = Ba.
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Next, we define the additive and multiplicative inverses of complex numbers,

and then use those inverses to define subtraction and division operations with
complex numbers.

j.m definition: —a, subtraction, 1/, division )

Suppose a, € C.

e Let —a denote the additive inverse of a. Thus —a is the unique complex
number such that

a+ (—a) =0.
e Subtraction on C is defined by
B—a=pB+(—a).

e Forw # 0, let 1/a and w denote the multiplicative inverse of x. Thus 1/a is
the unique complex number such that

a(l/a) = 1.

e For a # 0, division by a is defined by

/e = B(1/x).
- P P 4

So that we can conveniently make definitions and prove theorems that apply
to both real and complex numbers, we adopt the following notation.

1.6 notation: F J

Throughout this book, F stands for either R or C. q

Thus if we prove a theorem involving
F, we will know that it holds when F is
eplaced with R and when F is replaced
vith C.

Elements of F are called scalars. The word “scalar” (which is just a fancy
vord for “number”) is often used when we want to emphasize that an object is a
wmber, as opposed to a vector (vectors will be defined soon).

For « € F and m a positive integer, we define a™ to denote the product of &
vith itself m times:

The letter F is used because R and C
are examples of what are called fields.

m

ar = aeeen.
—

m times

‘'his definition implies that
AREV: =a™ and AQRVE = QEME

rall o, B € F and all positive integers m, n.

Section 1A R" and C* 5

Lists

Before defining R" and C”, we look at two important examples.

_ 1.7 example: R? and R3 1_

e The set R% which you can think of as a plane, is the set of all ordered pairs of
real numbers:
R? = {(x,y) : x,y € R}.

e The set R% which you can think of as ordinary space, is the set of all ordered
triples of real numbers:

R® = {(x,y,2) : x,y,z € R}.

To generalize R? and R to higher dimensions, we first need to discuss the
concept of lists.

\._.m definition: /ist, length

N

e Suppose 1 is a nonnegative integer. A list of length n is an ordered collec-
tion of n elements (which might be numbers, other lists, or more abstract

objects).
e Two lists are equal if and only if they have the same length and the same
& elements in the same order. >,

Lists are often written as elements
separated by commas and surrounded by
parentheses. Thus a list of length two is
an ordered pair that might be written as (a, b). A list of length three is an ordered
triple that might be written as (x,y,z). A list of length n might look like this:

(Zisves 5 Zipds

Sometimes we will use the word list without specifying its length. Remember,
however, that by definition each list has a finite length that is a nonnegative integer.
Thus an object that looks like (x;, x,, ... ), which might be said to have infinite
length, is not a list.

A list of length 0 looks like this: ( ). We consider such an object to be a list
so that some of our theorems will not have trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions have
meaning; in sets, order and repetitions are irrelevant.

Many mathematicians call a list of
length n an n-tuple.

1.9 example: lists versus sets _
e The lists (3,5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are equal.

o The lists (4,4) and (4,4,4) are not equal (they do not have the same length),
although the sets {4, 4} and {4, 4,4} both equal the set {4}.
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6 cnaprer 1 Vector spaces
H..:

To define the higher-dimensional analogues of R? and R we will simply replace
R with F (which equals R or C) and replace the 2 or 3 with an arbitrary positive
integer.

\A_;o notation: n M
/Ex a positive integer n for the rest of this chapter.

4
\d.: definition: F”, coordinate B

F” is the set of all lists of length 7 of elements of F:
F" = {(x1,..%,) : % EF fork = 1,...,n}.

For (xy,...,X,) € F" and k € {1, ..., n}, we say that x, is the k'™ coordinate of
()
J

.
If F = R and n equals 2 or 3, then the definition above of F* agrees with our
previous notions of R? and R

_ 1.12 example: C* _

C* is the set of all lists of four complex numbers:

4 3
C* = {(21, 20, 23.24) ® 21, 20.23,24 € C}.

If n > 4, we cannot visualize R" as

a physical object. Similarly, C' can be Mﬁ%ﬂ”:mwﬂ%h“ﬂ:ﬂﬁhwﬁw
thought of as a plane, but forn > 2, the 4, gusing MRQES of wc.% R3 _E,EE
human brain cannot provide a full image  pe perceived by creatures living in R?
of C". However, even if n is large, We  This novel, published in 1884, may
can perform algebraic manipulations in  help you imagine a physical space of
F” as easily as in R? or R® For example,  four or more dimensions.

addition in F” is defined as follows.

3.6 definition: addition in F" J

Addition in F" is defined by adding corresponding coordinates:

(X1 -es X)) + (Y15 oe0s Ypp) = (X + Y15 oees Xy + Yy)-

Often the mathematics of F” becomes cleaner if we use a single letter to denote
a list of n numbers, without explicitly writing the coordinates. For example, the
next result is stated with x and y in F" even though the proof requires the more
cumbersome notation of (x4, ...,x,,) and (Yq, ..., Y,)-

=Yy +X

Proof Suppose x = (X;,...,X,) € F'andy = (Y1, ¥n) € F". Then

XY = (O En) + Yoo Yi)

(X1 +Y1seens Xy T Yn)

WY1 + X050 Yu x:)

n@ﬁ. ...u._\:v T A.K.—« ...,\d:v.
=y+7

where the second and fourth equalities above hold because of the definition of
addition in F" and the third equality holds because of the usual commutativity of
addition in F.

If a single letter is used to denote an g3, cwmbol 4 means “end of proof "
element of F”, then the same letter with
appropriate subscripts is often used when
coordinates must be displayed. For example, if x € F, then letting x equal
(%], -, X,,) is good notation, as shown in the proof above. Even better, work with
just x and avoid explicit coordinates when possible.

? .15 notation: 0 J

Let 0 denote the list of length 7 whose coordinates are all 0:

0F=F(013350):

Here we are using the symbol 0 in two different ways—on the left side of the
equation above, the symbol 0 denotes a list of length 7, which is an element of F",
whereas on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context should always make
clear which 0 is intended.

1.16 example: context determines which 0 is intended

Consider the statement that 0 is an additive identity for F":
x+0=x forallx e F"

Here the 0 above is the list defined in 1.15, not the number 0, because we have
not defined the sum of an element of F” (namely, x) and the number 0.
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A picture can aid our intuition. We will
draw pictures in R? because we can sketch (a,b)
this space on two-dimensional surfaces 5
such as paper and computer screens. A
typical element of R? is a point v = (a,b).
Sometimes we think of v not as a point _
but as an arrow starting at the origin and
ending at (a, b), as shown here. When we
think of an element of R? as an arrow, we
refer to it as a vecror.

When we think of vectors in R? as arrows, we
can move an arrow parallel to itself (not changing
its length or direction) and still think of it as the
same vector. With that viewpoint, you will often
gain better understanding by dispensing with the
coordinate axes and the explicit coordinates and Avector.
just thinking of the vector, as shown in the figure here. The two arrows shown
here have the same length and same direction, so we think of them as the same
vector.

Whenever we use pictures in R? or
use the somewhat vague language of

Elements of R? can be thought of
as points or as veclors.

Mathematical models of the economy
can have thousands of variables, say

j.ﬁ definition: additive inverse in ", —x

For x € F" the additive inverse of x, denoted by —x, is the vector —x € F
such that
x+ (—x) =0.

Thus if x = (X, .- X, )5 then —x = (=27, ..., =X;,).

The additive inverse of a vector in R? is the
vector with the same length but pointing in the
opposite direction. The figure here illustrates
this way of thinking about the additive inverse
in R2 As you can see, the vector labeled —x has
the same length as the vector labeled x but points
in the opposite direction.

Having dealt with addition in F", we now turn to multiplication. We could
define a multiplication in F” in a similar fashion, starting with two elements of
F” and getting another element of F" by multiplying corresponding coordinates.
Experience shows that this definition is not useful for our purposes. Another
type of multiplication, called scalar multiplication, will be central to our subject.
Specifically, we need to define what it means to multiply an element of F" by an
element of F.

=

A vector and its additive inverse.

points and vectors, remember that these
are just aids to our understanding, not sub-
stitutes for the actual mathematics that
we will develop. Although we cannot
draw good pictures in high-dimensional

X1 -e-s X5000, Which means that we must
work in R5°%, Such a space cannot be
dealt with geometrically. However, the
algebraic approach works well. Thus
our subject is called linear algebra.

\:m definition: scalar multiplication in E"

The product of a number A and a vector
each coordinate of the vector by A:

spaces, the elements of these spaces are
as rigorously defined as elements of R>

For example, AN, -3,17, 7, ,\MV is an element of R% and we may casually
refer to it as a point in R® or a vector in R® without worrying about whether the
geometry of R® has any physical meaning.

Recall that we defined the sum of two elements of F” to be the element of F"
obtained by adding corresponding coordinates; see 1.13. As we will now see,
addition has a simple geometric interpretation in the special case of R?

Suppose we have two vectors u and v in R? v
that we want to add. Move the vector v parallel
to itself so that its initial point coincides with the
end point of the vector u, as shown here. The
sum u + v then equals the vector whose initial
point equals the initial point of u and whose end
point equals the end point of the vector v, as
shown here.

In the next definition, the 0 on the right side of the displayed equation is the
list 0 € F".

The sum of two vectors.

/708 R andl(a s e, ) E Ex

(it AR (A X5 A%)s

in F" is computed by multiplying

Lise g

Scalar multiplication has a nice geo-
metric interpretation in R% If A > 0 and
x € R2 then Ax is the vector that points
in the same direction as x and whose
length is A times the length of x. In other
words, to get Ax, we shrink or stretch x
by a factor of A, depending on whether
PR<SlSorAT>11.

If A < 0and x € R? then Ax is the
vector that points in the direction opposite
to that of x and whose length is |A| times
the length of x, as shown here.

Scalar multiplication in F* multiplies
together a scalar and a vector, getting
a vector. In contrast, the dot product in
R2 or R® multiplies together two vec-
tors and gets a scalar. Generalizations
of the dot product will become impor-
tant in Chapter 6.

1.,
m»\

Scalar multiplication.
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Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along with

operations of addition and multiplication satisfying all properties listed in 1.3.

Thus R and C are fields, as is the set of rational numbers along with the usual
operations of addition and multiplication. Another example of a field is the set
{0, 1} with the usual operations of addition and multiplication except that 1 + 1 is
defined to equal 0.

In this book we will not deal with fields other than R and C. However, many
of the definitions, theorems, and proofs in linear algebra that work for the fields
R and C also work without change for arbitrary fields. If you prefer to do so,
throughout much of this book (except for Chapters 6 and 7, which deal with inner
product spaces) you can think of F as denoting an arbitrary field instead of R
or C. For results (except in the inner product chapters) that have as a hypothesis
that F is C, you can probably replace that hypothesis with the hypothesis that F
is an algebraically closed field, which means that every nonconstant polynomial
with coefficients in F has a zero. A few results, such as Exercise 13 in Section
1C, require the hypothesis on F that 1 + 1 # 0.

Exercises 1A

1 Showthata+ =B +aforala,peC.

2 Showthat (@ +B)+A=a+ (f+A)foralla,f,A eC.
3 Show that (a)A = a(BA) forall a,f,A € C.
4 Show that A(w + B) = Aa + ABforall A,a, B € C.
5 Show that for every a € C, there exists a unique § € C such thata + = 0.
6 Show that for every « € C with a # 0, there exists a unique § € C such
that af = 1.
7 Show that
-1+ V3
2

is a cube root of 1 (meaning that its cube equals 1).
8 Find two distinct square roots of i.
9 Find x € R* such that
(4,-3,1,7) + 2x = (5,9, -6, 8).
10 Explain why there does not exist A € C such that

A2 - 3i,5 + 4i,—6 + 7i) = (12 — 5i,7 + 22i, —32 — 9i).

11 Show that (x +y) +z =x+ (y + z) forall x,y,z € F".

12 Show that (ab)x = a(bx) for all x € F* and alla,b € F.

13  Show that 1x = x for all x € F"

14 Show that A(x +y) = Ax + Ay forall A € Fandallx,y € I

15 Show that (@ + b)x = ax + bx foralla,b € Fand allx € F".

“Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?”
“] don’t know,” said Alice. “I lost count.”

—Through the Looking Glass, Lewis Carroll
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