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Endofinite modules over hereditary artinian PI-rings
Markus Schmidmeier

ABSTRACT. Let R be a hereditary artinian PI-ring. We describe the shape of
the (connected) components of the AR-quiver I'g, which has as set of points
a transversal of the indecomposable endofinite finite length R-modules. In
particular we adapt the Theorem of Ringel and Auslander, Bautista, Platzeck,
Reiten and Smalg to this more general situation.

“The representation theory of hereditary artin algebras is one of the most ex-
tensively studied and best understood theories developed to date.” [5, from the
introduction to chapter VIII]. What can be expected when extending the class of
rings under consideration to hereditary artinian polynomial identity rings? From
[22, Theorem 1] we know that the endofinite modules will play an important réle
in this theory: For a finitely generated indecomposable module M over an artinian
PI-ring R there exists a source map M — D (respectively a sink map B — M) in
the category Mod R with D (respectively B) finitely generated if and only if M is
endofinite. As a consequence, the structure of an Auslander-Reiten quiver I'p is
defined on a transversal of the indecomposable endofinite finite length R-modules.

In this article we aim at a description of the shape of the (connected) compo-
nents of the AR-quiver I'p for a hereditary artinian PI-ring R. In particular we
will adapt the Theorem of Ringel [16] and Auslander, Bautista, Platzeck, Reiten
and Smalg [2] to our situation.

THEOREM 1. Let R be a hereditary artinian Pl-ring and C C I'r a component
which does not contain a projective or an injective module. Then C is quasi-serial,
i. e. as a valued translation quiver, C is isomorphic to ZLA or to o tube.

Recall that the hereditary artinian rings of finite representation type and also
their modules are completely classified, see [10]. For artinian tensor rings R with a
duality condition whose underlying diagram is a Euclidean diagram, a description
of the finite length R-modules is given by Dlab and Ringel [7] and Ringel [15].
The components of the AR-quiver I'g which contain a projective or an injective
module are constructed for a large class of tensor rings R by Dowbor and Simson
(12]. However, the example of Dlab and Ringel [8] shows that not every hereditary
artinian Pl-ring is a tensor ring,.

The article is organized as follows. The examples in §1 show that the class of
hereditary artinian PI-rings extends the class of hereditary artin algebras also in
terms of a combinatorial datum; indeed, any valued quiver without oriented cycles
can be realized by a hereditary artinian Pl-ring. In the example in §2 we use the
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endolength to distinguish indecomposable modules of the same dimension vector.
We introduce the endo-dimension vector and recall from [21] and [22] how the
duality and the transpose manipulate the length and the endolength of a module.
In §3 we show that a Morita duality preserves AR-sequences (in the category of all
modules) which consist of finite length modules. The aim in §4 is to prove that the
AR-quiver, which is defined on a transversal of the indecomposable endofinite finite
length modules, has a homogeneous valuation. In 85 we will adapt the methods
of [5] to recover the shape of those components of the AR-quiver of a hereditary
artinian Pl-ring which contain a projective module. Finally in §6 we prove Theorem
I'in such a way that we obtain as a byproduct a description of the shape of the
regular components of the AR-quiver in the category of finite length modules in
Zimmermann’s example [25].

We use the following notation for a ring R. The category of all right R-modules
is denoted by Mod R and we write mod R for the full subcategory of Mod R con-
sisting of all finite length modules. We fix a transversal ind R of the indecom-
posable modules in mod R and denote by moder /2 and ind.sR the subclasses of
endofinite modules in mod R and ind R, respectively. Hom-sets are denoted as in
f€(Mg,M'g)orge (sN,sN'), morphisms are written on the opposite side of the
scalars, as e. g. f(m) or (n)g, and the composition is defined correspondingly. For
further notation and basic results on module theory and representation theory we
refer the reader to [1] and [5]. Besides the “usual” AR-sequences (in the category
Mod R), also AR-sequences in the category mod R will occur. These are nonsplit
short exact sequences consisting of finite length modules with the factorization
property of an AR-sequence restricted to test modules from mod R.

§1. Hereditary artinian Pl-rings

In this section we recall a characterization of artinian Pl-rings and present a
class of examples.

PROPOSITION 2 (A characterization of artinian Pl-rings). A semiprimary ring R,
€. g. a onesided arltinian ring, salisfies a polynomial identity tf and only if the factor
R = R/RadR modulo the (Jacobson-) radical is an artin algebra. a

This result is well-known and can be shown easily using the theorems of Ka-
plansky and of Procesi and Small [13, 13.6.14 and 13.4.9]. In particular any artin
algebra is an artinian Pl-ring.

Note that the class of hereditary artinian Pl-rings extends the class of heredi-
tary artin algebras in terms of the following combinatorial datum.

Definition. A (valued) quiver Q = (Qo, Q1,v,v') consists of a set @y of points,
a subset Q) C Qpy x Qp of arrows and two maps v,v' : )1 — IN, the valuations.
The quiver Q(R) = (Qv, Q1,v,v') of an artinian ring R with radical J = RadR is
defined as follows: If {e;,...,e,} is a full set of pairwise nonisomorphic primitive
idempotents of R, the set of points is Qo = {1,... ,n}. If K(i) = e;Re;/e;Je;
for i € @y and B(a) = es(a)Jeya)/esta) T2 es(a) for a = (s(a),t(a)) € Qo x Qu,
then the set of arrows is Q1 = {a € Qy x Qy : B(a) # 0}, and the valuations v,
v/ Q) — IN are given by v(a) = dim K(s(a))Bla) and v'(a) = dim B(a) g 4(a))-
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This notation deviates from e. g. 7] since we do not assume that there exist
natural numbers f; for i € Qq such that fy,yv(a) = v'() fy(a) holds for all o € Q.
Indeed, the existence of these numbers characterizes those finite quivers without
oriented cycles which can be realized as quivers of a hereditary artin algebra [5,
Prop. 6.4 and 6.7]. However, any finite quiver without oriented cycles can be
realized as quiver of a hereditary artinian Pl-ring. For this let & be a field and Q a
finite quiver. If K = k(X) is the field of rational functions with coeflicients in k and
n a natural number, the endomorphism ¢" : K — K given by ¢"(X) = X" and
Fix¢" = k satisfies dim Kjyg4n = n, see e. g. [23, §63]. Deline T (Q) to be the tensor
algebra T'(Rg, Ry), where Ry is the ring HieQu K and R; the Ry — Ry-bimodule
Hang ovto) K o7y with the multiplication given by Q.

LEMMA 3. Let Q be a finite quiver without oriented cycles and k a field. The tensor
algebra Ty (Q) is a hereditary artinian Pl-ring with quiver Q.

Proof. Since the K-tensor product of bimodules of type 4n Kyn has finite K-
dimension on either side, and since @@ has no oriented cycles, the tensor ring R =
T:(Q) is an artinian ring containing k in its centre. The ring Ry is commutative,
so R satisfies the identity (Y Z — ZY)/@Qol = 0. Moreover we have for ¢ € Qq

RadeR = P Kpw®rR=2 P (awB)@,
aeQy, s(a)=i a€Qp, s(a)=i
where e; is the primitive idempotent element corresponding to i € Q. It follows
that R is hereditary and has quiver Q. O
2

Example. Let @ be the quiver / \ , which can not be realized by an artin
1 o1 3

algebra. The tensor ring R = T},(Q) is a hereditary artinian Pl-ring. No nonzero
R-module has finite length as a module over the centre k of R. In particular,
the functor D = (—, k) : Mod R — RMod has the property that ykDM is not
finitely generated for each nonzero module M € mod R. Nevertheless, the modules
in indy R are accessible to methods of representation theory as we will see in the
following sections.

§2. Endofinite modules

For the description of a finite length R-module M with endomorphism ring S
the following numerical data are available.

{(Mp) € INgU{oo} the length of Mp
[Mr] € Ky(modR) the dimension vector if £{(Mp) < oo
e(Mp)=4£(sM) € INpU{co} the endolength
[sM] € Ky(Smod) the endo-dimension vector if e(Mp) < oo

In this section we give an example in which the endolength is used to distinguish
indecomposable modules of the same dimension vector. We state a formula for the
endo-dimension vector and recall how the duality manipulates the dimension vector
and the endo-dimension vector.
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Ezample. Let R be the ring in the Example in §1 and consider the decom-
position Rp = e1 R @ eaR & egR given by the quiver. Indecomposable right R-
modules M of dimension vector (1,1,1) can be obtained as cokernels M, of maps
fr 1 eaR — e1R, where 0 # 2z € K ® K @ 4 K denotes the image of e3 in Soce; R.
To get a full list of the indecomposable modules of this dimension vector, up to iso-
morphism, we also include the cokernel M of the map f te3R — eaR® e RiesR,
€3 = ((0: 0, 1}! (05 0, (05 1)))

M | dimM EndM e(Mg) layers in radical series of M
Mo, 1) {1,1.1) K 3 1123
M1 ,0) (1,1,1) K 4 1]23
M (1,1,1) K 5 123
M1y, a € K\N{0} | (1,1,1) k 0o 1123

The endo-dimension vector of an endofinite module M can be considered as
the tuple of the endolengths of the isoclasses of the indecomposable summands of
M. More precisely, we have the following immediate consequence of 6, 4.5).

PROPOSITION 4 (A formula for the endo-dimension vector). Let Mg be an endo-
finite module with endomorphism ring S and suppose that Mp = M7 & .- & M
is a decomposition such that the modules M; are pairwise nonisomorphic and have
local endomorphism ring. The simple End M -modules X;, 1 < i < t, form a
transversal of simple left S-modules. We have

[sM] = ZE(Mi)[SXi]

in Ko(Smod). ]

Now we recall some results about the operation of the duality and the transpose
on finite length modules over an artinian ring R. Note first that due to the lack of a
duality mod R — R mod given by the centre of the ring we will use the local duality
L for the construction of AR-sequences. Indeed, by (4, I, Theorem 3.9| there exists
for each nonprojective module C' € ind R an AR-sequence 0 - LTYC — B — C —
0 (in the category Mod R), but the module L Tr C' may not have finite length.

Definition. For a module Mg with local endomorphism ring S the local dual is
LM = r(sM, sI), where sI = E(sS) is the injective envelope of the radical factor
of S. For a finite sum M = ][, M; of modules M; with local endomorphism ring
we put LM =[], LM;. The local duality is not functorial in general.

To describe the local dual of a module we use the following two isomorphisms
of Grothendieck groups. If R is a semiperfect ring, e. g. a semiprimary ring, we
define

Ar i Ko(mod R) —» Ko(Rmod) by [eR] — [Re]

for primitive idempotents e. Suppose that S is a semiprimary ring and s/ a finitely
cogenerated injective cogenerator. Then also the endomorphism ring 7' = End g1
is a semiprimary ring and the functor (—, g/) : Smod — modT induces the iso-
morphism of Grothendieck groups

pr 2 Ko(Smod) — Ko(modT), [sM]— [(sM,sI)7],



ENDOFINITE MODULES OVER HEREDITARY ARTINIAN PI-RINGS 501

which coincides on the classes of the semisimple modules with the isomorphism of
Grothendieck groups given by the Morita duality (—, sSocs!) : Smod — mod T

Definition. Using the notation of the previous definition, we say that M is
L-reflezive if (—, sI) is a Morita duality with respect to which M is reflexive.

For a finite length module M over an artinian PI-ring R the following assertions
are equivalent: (1) M is endofinite; (2) LM has finite length; (3) M is L-reflexive.
Thus the endofiniteness determines the behavior of the local duality. We will also
need the following quantitative result [21, Theorem 11].

THEOREM 5 (Dualizing modules over semiprimary Pl-rings). Let R and S be
semiprimary Pl-rings, sMp a bimodule and I a finitely cogenerated injective co-
generator with endomorphism ring T = End gI.

1. The ring T is o semiprimary Pl-ring. The module sM has finite length if
and only if the dual module (sM,sI)r has finite length. In this case, we
have [(sM, sI)7] = pr[sM] in Ko(mod T).

2. If two of the modules sM, Mg, r(sM, gI) have finite length, all three have
finite length. If this is the case and if sI = E(sS), we have [r(sM, sI)] =
/\R[MR] mn Ko(RmOd).

3. Suppose sI = E(sS) and Jy = E(T7). Both sM and Mg have finite length
if and only if the bidual module ((sM, sI)t, Jr)r has finite length. O

Also recall that the transpose preserves and reflects endofiniteness for finite
length modules over artinian PI-rings [22].

§3. Morita duality

In this section we show that a Morita duality preserves endofiniteness for finite
length modules over an artinian Pl-ring R. As a consequence we obtain that the
Morita dual of an AR-sequence (in RMod) consisting of finite length modules is
again an AR-sequence (in the category of all modules). In preparation of the next
sections we also study the commutativity of LM and M Tr.

PROPOSITION 6 (On the Morita duality). Let R be an artinian Pl-ring and rQ a
finitely cogenerated injective cogenerator with endomorphism ring R’.

1. The functor M = (—,r@) : Rmod — mod R’ is a Morite duality. For
M € Rmod we have [(MM)r] = polrM].

2. If M € Rmod has endomorphism ring S, then MM becomes a left S-module
ustng the canonical isomorphism S = End(MM)p. The module M is
endofinite if and only if the Morita dual module (MM)g: is endofinite. If
this is the case and if RQ = E(grR), then [sMM] = As[Ms] in Ko(S mod).

3. The ring R’ is an artinian Pl-ring, moreover, R’ is hereditary if and only if
R is hereditary.

4. If £ is an AR-sequence in RMod consisting of finite length modules, then
ME is an AR-sequence in Mod R’ consisting of finite length modules. .

Proof. 1. According to Rosenberg and Zelinsky's theorem [19, Theorem 3],
rQ is finitely generated, hence induces a Morita duality [1, Theorem 30.4].

2. This is a consequence of 2. in Theorem 5 (with the rdle of R and S ex-
changed).
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3. As Morita dual of a ring, R’ is right artinian. As endomorphism ring of a
finitely generated module over a Pl-ring, R’ itself is a Pl-ring. We get from [27,
Prop. 3] or from Theorem 5 (put M = R and I = @ in 1.) that @ is endofinite.
The second assertion of this proposition implies that R’ = MQ is left artinian.

4. If £ is an AR-sequence in R Mod consisting of finite length modules, the
dual sequence ME is an AR-sequence in mod R’. By [22, Theorem 1] (quoted in
the introduction) the last term of £ is endofinite. We get from the second assertion
that the first term of ME is endofinite, in particular this module is pure injective,
so ME is an AR-sequence in Mod R’ by [24, Prop. 3]. O

Next we will show that LM commutes with M Tr.

PROPOSITION 7. Let R be an artinian Pl-ring with Morita dualities M = (—, @) :
RBmod — mod R’ and M : mod R — R" mod. We also denote the inverses of these
Morita dualities by M.

1. The functor MTr : mod R/P(mod R) — mod R'/I(mod R') is an equi-
valence of categories, where P(mod R) (respectively Z(mod R)) denotes the
categorial ideal consisting of those homomorphisms which factor through a
projective (respectively an injective) module. If R is also hereditary, MTr
is @ functor mod R — mod R’ which preserves monomorphisms and those
epimorphisms whose kernel does not have a projective summand.

2. The map LM : mod, R — mod R preserves and reflects simple, injec-
tive and projective modules. For M € modyR we have [(LMM)g] -

Arpg[Mp].
3. The following diagram commules pointwise up to isomorphism.
moder MTr modcs
LM LM
modep 2" VT moder

4. For n € IN there are artinian Pl-rings Ry = R, Ry = R',... R, such that
there exist Morita dualities M @ R;mod — mod R;y,, 0 < 7 < n. For
M € mode R we have (LTr)" M 2 (LM)* (M Tr)" M.

Proof. 1. This assertion is shown as for modules over artin algebras.

2. It is well-known that the local duality maps simple modules to simple mod-
ules, indecomposable projective modules to indecomposable injective modules and
— in this case — indecomposable injective modules to indecomposable projective
modules (see e. g. [21, Theorem 2]).

3. It suffices to check the commutativity of the diagram for nonprojective
modules C' € indefR. Therefore we take an AR-sequence 0 - A — B — C — 0
in Mod R and show that A = LTvC = (MTy)(LM)C. By Proposition 6, the
sequence 0 — MC' — MB — MA — 0 is an AR-sequence in Mod R, hence MC' &
L TrMA. The module Tr MA is as an endofinite module L-reflexive (Proposition 6
and the notes after and before Theorem 5), so applications of L, Tr and M yield
the isomorphism (M Tr)(LM)C = A.

4. This assertion follows from 1. in Proposition 6 and 3. |
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84. Auslander-Reiten quivers

Let R be an artinian Pl-ring and T’y the set inder 2. Up to isomorphism, this
set contains all simple modules, all indecomposable projective modules since Rp is
endofinite and since summands of endofinite modules also are endofinite [6, Prop.
4.4], and all indecomposable injective modules, which are finitely generated by [19,
Theorem 3] and endofinite as dual modules of projective modules (27, Prop. 3]. In
this section the AR-quiver I'p (in the category Mod R) is defined in the usual way
as a translation quiver on the set of points I'y. We will show that this quiver has
homogeneous valuation, i. e. the translation preserves the valuations of the arrows.

Define the set of arrows I'y as the set of those pairs a = (s{a),t(a)) € 'y x Ty
for which there exists a morphism s(a) — ¢(e) which is irreducible in the category
Mod R. Then (I'y,T'y) is an oriented graph without loops. We know from [22,
Theorems 2 and 1] that Iy is closed under irreducible predecessors and successors
and that for each M € I'y there exist a sink map M — D and a source map B — M
in the category Mod R with B and D finite length modules.

Using the construction of irreducible maps from sink maps or source maps [3,
Theorem 2.4] we obtain the following valuations on T'.

d(e) = max{n €IN : s(a)” is isomorphic to a summand of B},
where B — t(a) is a sink map in the category Mod R
d'(a) = max{n €N : t(a)" is isomorphic to a summand of D},

where s(a) — D is a source map in the category Mod R

It follows from the characterization of AR-sequences by sink maps and source
maps [4, II, Prop. 4.4] that there is a bijection 7 : I'p\P — [o\Z such that for
a module M € T\ P the set M~ of I'j-predecessors of M coincides with the set
(tM)* of I'1-successors of 7M. Here P and Z denote the set of all projective and
all injective modules in I'y, respectively. The AR-quiver (in the category Mod R) is
the translation quiver

FR = (Fu,rl,d, d’,T).

Remark. Besides the AR-quiver in the category Mod R we will also consider as
Example 1 in §6 an AR-quiver in the category mod R for the ring R studied in [25].
There it is shown that for each nonprojective module C in ind R (respectively each
noninjective module A in ind R) there exists an AR-sequence 0 = A — B - C — 0
in the category mod R. Sink maps in mod R, source maps in mod R and irreducible
homomorphisms in mod R are defined in the canonical way and satisfy the relations
mentioned above. Thus for this particular ring R, the AR-quiver in the category
mod R can be constructed analogically on the set I'y = ind R.

In the remainder of this section we show that the AR-quiver (in Mod R) has
homogeneous valuation for an artinian Pl-ring R.

Let £:0 - A - [[, B/ — C — 0 be an AR-sequence such that the modules
B, are pairwise nonisomorphic and have local endomorphism ring. It follows from
the axioms of a source map and from its uniqueness [3, Prop. 2.2] that the canonical
map ¢ : K4 — K¢ is an isomorphism of skew fields, where K 4 denotes the radical
factor of End A. The following bilinear form is known from [17, (3.2) and (3.4)],
cf. also [9].
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LEMMA 8. There is a nondegenerate homomorphism of Kp, — K, -bimodules
@; : iIT(A, Bi) N gil‘l‘(B,;, C) — KB‘.,
where irr( A, B;) denotes the Kp, — K 4-bimodule rad(Agr, Bir)/ 1'ad2(AR, B;rp). O

From the next lemma we obtain the following isomorphism of Kp, — K-
bimodules.

irr(A, Bi) = (iI‘I‘(Bi, C)KB,- ) I{Bi)C

LEMMA 9 (On the Hom-Tensor adjoint isomorphism). Let R, § and T be rings
and pXs, sYr and rZp be bimodules.

1. A homomorphism ¢ € (X ®g Y, Z7) is an R — T-bimodule homomorphism
if and only if the adjoint homomorphism ¢ : Xs — (Yo, Z1)s given by
P(z)(y) = ¢(x ®y) is an R — S-bimodule homomorphism.

2. Let X be a finitely presented module and Zp an injective cogenerator which
is left balanced, i. e. every endomorphism of Zr is given by left multiplica-
tion. The map ¢ in the first assertion is a left and right nondegenerate
bimodule homomorphism if and only if ¥ is a bimodule isomorphism.

Proof. The first assertion is verified easily. For the proof of the second let
¢: X ®sY — Z be an R — T-bimodule homomorphism. It is easy to see that ¢ is
left nondegenerate if and only if 1 is a monomorphism. If 3 is surjective, then ¢ is
right nondegenerate: For any 0 # y € Y there is f € (Yp, Z7) such that f(y) # 0
since Zy is a cogenerator. Now our assumption implies that there is an © € X such
that f = ¢(z ® —).

Conversely if ¢ is right nondegenerate, then the map x : Yr — (rX,rZ)r
given by x(y) = (z — ¢(z ® y)) is a monomorphism. Hence for f: Yy — Zp there
is g: (rX, RZ)r — Zp such that f = gy since Zr is injective. Since rpX is finitely
presented and Zp is injective, the canonical map (Zy, Zp)®@rX — ((rX, rZ)1, ZT)
is an isomorphism and we get (; € End Z¢ and z; € X, i = 1,...,n, such that
g(uw) =30 G((wi)u) foru € (rX, rZ). Since Z is left balanced, g is the evaluation
at some z € X. Hence f(y) = ¢(z ®@y) for y € Y. Thus, 1 is surjective. O

PROPOSITION 10. The AR-quiver of an artinian PI-ring has homogeneous valua-
tion.

Proof. Let R be an artinian Pl-ring with AR-quiver I'r = (T'o,I'1,d,d’, 7).
Suppose £ as above is an AR-sequence in Mod R consisting of finite length modules.
Since the endomorphism ring of a finite length module is semiprimary [1, Cor. 29.3],
and since the endomorphism ring of a finitely generated module over a Pl-ring also
is a PI-ring [13, 13.4.9], we obtain from Proposition 2 that the skew fields K 5. and
K¢ are finite dimensional over their centres. With an application of the Lemma of
Dowbor and Simson [11, Prop. 1.3] we can compute the right and left dimension
of the dual module in the isomorphism of bimodules constructed with Lemma 9.

dimirr(A, B}k, = dim g irr(B;,C), dim Kg,r1(A, B;) = dimirr(B;, C) k.

For e € Ty it can be shown as in [5, VIII, Prop. 1.3] that d(a) and d'(«) coincide
with the right and left dimension of the Ky — K(a)-bimodule irr(s(a),t(a)),
respectively. If s(a) and ¢(«) are nonprojective modules we have just seen that these
dimensions coincide with the left and right dimension of the K (o) —K(q)-bimodule
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irr(rt(a), s(a)) and also with the right and left dimension of the K,;(q) — K (a)-
bimodule irr(7s(e), 7¢(a)), respectively. This completes the proof. O

§5. Preprojective components in the hereditary case

Throughout this section let R be a hereditary artinian PI-ring. The indecom-
posable projective R-modules are endofinite, so we can study their component(s) in
the AR-quiver. This has been done for a large class of tensorrings in [12], but not
every hereditary artinian Pl-ring is a tensorring [8]. We will follow the approach in
(5, VIII, §1-2] replacing whenever necessary the duality given by the centre of R by
a Morita duality or by the local duality. The proofs of the following results are given
in greater detail in [20]. Also the corresponding statements about components of
the AR-quiver containing injective modules hold.

Definition. Let Ey, ..., E, be simple right R-modules in a 1-1-correspondence
to the points in the quiver of R. Let P, be a projective hull and I; an injective
envelope of F; for i = 1,... ,n. We may choose the modules E;, P, and I; as ele-
ments of inder R. Since R has finite global dimension, the sets {[E;] :i =1,... ,n},
{[P] :4=1,...,n} and {[I;] : 4 = 1,...,n} are bases of Ky(mod R). Hence
the cozeter transformation ¢ : Ko(mod R) — Ky(mod R), [P)] — —[I;] = —[LP;],
is defined and an isomorphism of groups. An element m € Ky(mod R) is called
positive (respectively negative) if all coordinates of m with respect to the basis
{[E;) :i=1,... ,n} are positive (respectively negative).

PropPoOSITION 11 (On the coxeter transformation). For M € mod R we have
C[M] = )\R[TI' M] = /\R[.Mf*].

In particular if M is indecomposable, then c[M] is either negative or positive; c[M|
is negative if and only if M is projective. If M 1is endofinite, then c[M] = [L Tr M| -
[LM™].

Proof. For the first assertion apply the functor (—, Ry) to a minimal projective
presentation of Mz. Now multiply the classes in Ko(Rmod) of the modules in the
long exact sequence by Ar and use 2. in Theorem 5 to compute c[M]. The further
statements are immediate consequences. O

Definition. A module M € ind R is preprojective if there exists a t € Ny
such that (LTr)'M is a finite length module for i = 1,... ,¢ and (LTr)!M is an
indecomposable projective module. In this case we put p(M) = t and, if (L Tr)* M =
P;, P(M) = j. A component of I'p is preprojective if it consists of preprojective
modules and does not contain oriented cycles.

PRrROPOSITION 12 (Preprojective modules and preprojective components).

1. A module M € ind R is preprojective if and only if ¢"[M] is negative for
some n € INp. :

2. Suppose that M, M' € ind R satisfy [Mg] = [My]. If M is preprojective,
then Mp = M’.

3. Any component of I'r which contains a projective module is a preprojective
component.
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Proof. Let M € ind R be a nonprojective module. Note that in Proposition 11
we have constructed a module M’ € ind R with [M’] = ¢[M] only in the situation
that M is an endofinite module. In order to study an iterated application ¢"[M] of
the coxeter transformation we construct Morita dualities M : R; mod — mod R,
fori=0,...,n—1 with Ry = R and consider the modules (M Tv)* M € mod R; for
it =0,...,n. Using Proposition 7 and Proposition 11 one can controll the dimension
vectors of these modules and detect projectivity. With this modification, the results
in the proposition can be shown as the corresponding results in [5]. O

Now we can read the shape of the preprojective components in I'p; from the
composition structure of R.

PRrOPOSITION 13 (The shape of the preprojective components). Let C be the union
of all preprojective components of T'y. There is an injective morphism of valued
translation quivers

B: C—-INgQ(R)?, M (p(M),P(M)).

Proof. This proposition can be shown as the correéponcling statement for artin
algebras, [5, VIII, Prop. 1.15]. Only for the proof that 3 preserves both valuations
of arrows between projective vertices one may want to use the following result. [J

LEMMA 14. A homomorphism p : P — @ between finitely generated projective
R-modules is irreducible in the category Mod R if and only if p* : Q* — P* is
irreducible in the category R Mod.

Proof. Since * induces a duality between the full subcategories of mod R and
Rmod consisting of projective modules, p is split if and only if p* is split. We
only show the direction “=". Assume that p* = gh for some ¥ € RMod, g :
Q* > Yandh:Y — P*. Put ¢ =gh:Q* — Imh and &' = incl : Imh — P*.
Since K is hereditary, Imh is a finitely generated projective module. Since p is
irreducible, so is p** and ¢'" or h'" splits. Hence k' is a split epimorphism or ¢’ is
a split monomorphism. This implies that k is a split epimorphism or g is a split
monomorphism. 1l

We conclude this section by sketching the preprojective component of I' ; where
R is the ring from the example in §1.

(0,1,1) <o (3,3,5) oo (10,12,17) =revererene

(0,0,1) 2,3, (9,10,15)ereeeke
1\
........... (18,17,25) ioivin
§6. Regular components

A component C of an AR-quiver is called regular if there is no projective and
no injective module in C. In this section we describe the shape of the regular
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components of the AR-quiver of a hereditary artinian PI-ring (Theorem 1) and
consider two examples.

The left exactness of the functor DTr seems to be a key ingredient in the
proofs of the corresponding result for hereditary artin algebras in [16], [2] and [18].
However, if the underlying ring is not an artin algebra, the functoriality of the local
duality L, which replaces D, may not be available.

So we establish a criterion for a component C of an AR-quiver to be quasi-serial
which uses only the following weak left exactness condition for the AR-translate 7.

(%) For n,m € IN and every monomorphism f : X — Y™
with X,Y € C we have £(7"X) < m - {(v"Y)

We state our criterion in such a way that it can be applied also to study components
of an AR-quiver in the category of finite length modules.

PROPOSITION 15 (A test for quasi-serial). Let R be a right artinian ring and Mp
either of the categories Mod R or mod R. Suppose that the AR-quiver T'p in the
category Mg ezists and that C C Ty is a reqular component with homogeneous
valuation. If condition (%) is satisfied, then C is a quasi-serial component.

Proof. 'This proof follows the steps in the proof of [18, Theorem|. Recall that
a star with centre z is a finite quiver ) = (Qo, ¢1, v, V') such that the underlying
nonoriented graph of @ is a star with centre z and such that each arrow o € @,
satisfies v(a) = 1 if t(a) # z and v/(a) = 1 if s(a) # z. A star @ is said to have n
raysif n =3 couitt@=2) V() + 2 1ac, s(a)=) V' (@)- For example, the following
quiver is a star with 6 rays.

Suppose that C is a regular component of I'; with homogeneous valuation.
From [14, Struktursatz] we obtain a tree @, i. e. a connected oriented graph without
unoriented cycles, and a covering 7 : Z — C of translation quivers without
valuation. Take the unique valuation (d, d') on ZZQ such that = becomes a morphism
of (valued) translation quivers. Since the valuation on C is homogeneous, there
exists a valuation on () which induces this valuation on Z@Q.

We can obtain detailed information about this quiver @ using the length func-
tion £: (ZQ)o — N,z — £(wxzR), which has the following properties. It is
o additive, i. e. £(y) + (1Y) = ey A, y) - {(z) for y € (ZQ)o, since there
is a short exact sequence 0 — w7y — [ ., - (r2)4 ™) — Yy — 0 in mod R,
o strict, i. e. £(x) # £(y) for x — y € (ZQ)1, since there exists an irreducible
morphism w2 — 7y in the category Mp and
o monotonic, i. e. {(tx) < {(ty) for all z — y € (ZQ), satisfying £(z) < {(y),
since we have the weak left exactness condition (x).
By [18, Prop.| the following assertions are equivalent for a connected quiver Q.

i) There exists an additive, strict and monotonic function ¢ : (ZQ), — IN.
ii) The quiver @ is A, or a star, but not a Dynkin diagram.

It remains to exclude the case that @ is a star. Therefore we assume that @
is a star with centre z and n rays and construct a contradiction. To visualize the
situation we draw a picture (with @ a quiver of type E7).
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The arrows a; € ZL(@), pointing towards the centre correspond io irreducible
monomorphisms in Mg: This can be shown successively using a length argument
and the following AR-sequences.

0 — ms(ay1) — (o) ® ws(a;) — mi(ey) — 0

Put M; = n(i, 2) for i € Z. From the AR-sequences

n
Ouéﬂ/fifl HHBU —>Mi—>0,
j=1
in which the indecomposable summands B;; of the middle term occur with a mul-
tiplicity given by the quiver, we hence obtain monomorphisms

fi : Mifl “-%M:%

Thus we have for each ¢ € IN a monomorphism g; = (” o fllo fi i My —
M ") and if m = {(Mypr), there is also a monomorphlsm ht : My — M.

Using the weak left exactness condition (x) again, we obtain for each t € IN an
inequality £(M_;) < m . €(My) = m?. Hence we have that all z € ZQ which lie
on the left hand side of (0, z) satisfy ¢(z) < m?. There exists a nonzero homomor-
phism P — M, from a projective module P. This homomorphism can be factored
through a sum of compositions of 2(m*) — 1 irreducible maps between indecompos-
able modules of length at most m? — we obtain a contradiction from the Lemma
of Harada and Sai [5, VI, Cor. 1.3] to our assumption that @ is a star. Thus the
quiver @ is A, and we have shown that C is a quasi-serial component. O

We are now ready to prove our Theorem on the shape of the regular compo-
nents.

Proof of Theorem 1. Let R be a hereditary artinian Pl-ring and C a regular
component of the AR-quiver I'g, which has a homogeneous valuation according to
Proposition 10. We show that the weak left exactness condition () in Proposition
15 holds. Decompose the map (LTr)" : modes R — modes R into (LM)™ o (M Tr)™ as
in Proposition 7. Since (MTr)" : mod R — mod R’ is a left exact functor and since
the isomorphism of Grothendieck groups Ky(mod R') — Ky(mod R) induced by
(LM)™ preserves the classes of simple modules, we conclude that the AR-translate
7 is weakly left exact. O
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Ezample 1. In [25] and [26] Zimmermann has studied the existence of AR-
sequences in the category mod R for the following hereditary artinian PI-ring R. Let
K be the field of formal Laurant series in one variable over some field k& of charac-
teristic zero, & : K — K a certain derivative and x B = K ® K the K — K-bimodule
with right multiplication (b,b')c = (be,b'c + b8(c)). Put R = ( fg }3 ) It is
shown that any module M € ind R which is neither preprojective nor preinjective
occurs in an AR-sequence in the category mod R of type£: 0 - M — B —- M — 0.
Indeed, M is endofinite if and only if £ is an AR-sequence in the category Mod R.

We obtain the following description of the AR-quiver I in the category mod R,
as defined in the Remark in §4. Since AR-sequences in Mod R which consist of finite
length modules are also AR-sequences in mod R, the results in §5 hold also for the
preprojective component and the preinjective component of I'g. From Proposition
15 we obtain that all the regular components of I' are quasi-serial; it follows from
the particular form of the AR-sequences above that the regular components are
more precisely tubes of diameter 1. In the family of these tubes there is one tube
which consists of endofinite modules according to [15, Theorem 4]. The modules
in the other tubes can be considered as torsion modules over the derivation poly-
nomial ring K[X; 8], their components are parametrized by the equivalence classes
of the irreducible polynomials in K[X;é]. None of these modules is endofinite;
more precisely it is shown in [25, Proof of Theorem 13 and Theorem 15] that the
endomorphism ring of such a module is a finite dimensional k-algebra.

Ezample 2. Let the ring R be as in the Example in §1. Since the characteristic
polynomial of the coxeter matrix of R has three real roots different from 1, all
regular components of I'p must be of type ZA.,. According to §2 there are, up to
isomorphism, three indecomposable endofinite modules of dimension vector (1,1, 1),
which have endolength 3, 4 and 5. The modules of endolength 3 and 5 occur as
quasi-simple modules in their components; the component containing the module
of dimension vector (1,1,1) and endolength 4 has the following shape.

(5,4,2) =weinen (3,1,2) s (2,3,3)
NN SN
(2,1,1) =renenniens (1,1,1) atoremenens (2,2,3)
/N / S A
(2,0,1) rerernenn (0,1,0) ererieenns (1,0,1)
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