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RING UNITS IN ITERATED CYCLIC
EXTENSIONS, AND IN NTRU

MARKUS SCHMIDMEIER

ABSTRACT. We develop a formula for the number of units in finite commutative
rings which arise as iterated cyclic extensions. The formula depends only on the
degree of the irreducible factors of certain polynomials with coefficients in a finite
field. Examples of such rings include the domain Zq[:r;]/(.‘r:‘\r — 1) which is used to
encrypt messages in the public key cryptographic system NTRU. We recognize
the known problem that the checksum of a message in the standard setup of
NTRU is not protected and describe how this problem is handled in our internet
implementation HERMES of NTRU.

In this paper we construct and count the units in finite commutative rings
which are given as cyclic extensions. Our result can be applied to the study
of the public key cryptographic system NTRU, which is based on the theory of
finite commutative rings, and in which units play a key role, namely the role of
keys. NTRU has attracted considerable interest recently as it is much faster than
traditional public key systems and it appears to be secure since its security is
based on, and perhaps equivalent to, the lattice basis reduction problem.

In the first section of the paper we study the units in finite commutative
rings which are given as iterated cyclic extensions. Our formula for counting
units starts at the innermost domain. For each extension, only the degrees of
the irreducible factors of the defining polynomial with coefficients in a finite field
are required.

" In an application to NTRU in the following sections we point out that the
checksum of a message modulo the “big” parameter g is not protected in the
standard setup. We describe how this problem is avoided in our own implemen-
tation HERMES written in the internet language JavaScript.
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1. Counting units in finite commutative rings

Let k be a field, then the number of units of k is |k*| = |k| — 1. Two gener-
alizations give rise to the formula for the number of units in an arbitrary finite
commutative ring R. First, assume that R is local, so R has a unique (proper)
maximal ideal m, and the quotient ring k = R/m is a field. For example, if
g = p™ is a prime power then the ring Z i the integers mod g, is a local ring
with maximal ideal the multiples of p (mod ¢). In each finite local ring, the
maximal ideal m is a nil ideal, that is, the powers of any element in m eventu-
ally become zero. As a consequence of the following lemma, which is well known,
we obtain that the number of units in R is

. il tl (1oL
R = (1K= 1) ol = ] (1= 7).

LEMMA 1.1. Let A be a finite ring, and I C A a nil ideal. Then the number
of units in A is

|A*| = [(A/D)*] - 1.
More precisely, if I = {iy,...,i,}, andif {u,, - ,u,,} is a set of representatives
in A of the classes of the units in A/I, then A* is the set

AM={u +i:1<s<m, 1<t <n}.

Proof. Under the ring map A — A/I, units go to units, and moreover,
only units go to units: If 4o = 1 holds in A/I and if v and v represent @ and
¥ in A then there is 7 € I such that wv = 1 — ¢ holds in A. This implies that
wv(l+4+i% +i® + -~ 4+4"7') =1 holds in A where ¢ is the nilpotency index
of i; so, u has a right inverse in A. O

As any finite commutative ring R is a product of (finite) local rings, say

R = [] R; (sce for example [1], Exercise 5, §27), the number of units in R is
i=1
obtained as

1 1
R*| =|R*|- |R*|.-.-- #T P T B TR
=181 18] s =181 (1= ) - (1= 1)

?ll

where we denote by k; the quotient field of R, modulo its maximal ideal.

EXAMPLE 1. For ¢ = 2, the ring R = Z [T]/(T" — 1) is a product of three
local rings, namely: Over Z,, the polynomial f = T7 —1 factors as a product of
irreducible polynomials, f = f, f,f, where f, = (T—1), f, = (T*+T+1), and
f3 = (T3 +T?+1). Thus, R is the product of three local rings, R, x R, x R,
where R, = Z,[T]/(f;) for cach i. The Euclidean algorithm gives rise to a
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decomposition of 1in R as 1= (T%)- fofs + (T?+ 1) f1f3 +(T>+TY) - £, f5,
so the ring inclusions R, — R are given by multiplication by e, = h, - [] Fis
i
where we have here h, = T3, h, = (T? + 1), and hy = (T° + T*). Also,
when considered as elements in R, the e, form a full set of pairwise orthogonal
idempotent elements in R. Note that multiplication by e; defines a ring map
e;: R; = R; together with the canonical maps can;, the maps e; describe the
direct product decomposition R = [[ R,, where R, corresponds to the subring
e,;Rin R. i

Z4[T)
(f1f21a)
cany €3
(] C\
Z4[T) cans || e2 Z4[T]
(f1) (f3)
ZlT
(f2)

In our example, 1 is a product of three local rings (even fields), so the number
: 2 e *| _ o7 1 1312
of units in R is |[R*| =27 (1-3)-(1-35)".
Next, we assume that for a base ring A the decomposition A = [JA, as
a product of local rings A,, and the cardinalities of the rings A; and of their
maximal ideals p; C A; are given. The aim is to specify the number of units in

a cyclic extension R of A:
_ Alz]

(»)
where p is a monic polynomial with coefficients in A. We will see that the
cardinality of the unit set in R can be computed easily from A provided only
the irreducible factors of the classes of the polynomial p in certain finite fields
are known.
First we handle the case that the base ring A is a local ring.

LEMMA 1.2. Let A be a local ring with maximal ideal p and canonical map

Ao k= ‘;\‘7 Suppose that for a monic polynomial f = Z a;x' in Alz], the
1

class of f in k[z] factors as f =} aa’ = fi"'--- fi'* where the f; are pairwise

1
nonequivalent irreducible polynomials of degree d, = deg f,. Then

() |- 1)

i=1

Alz]

(/)
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Proof. The set ﬂ—'t_f)m is a nil ideal in %1 with quotient

Afa] Ale] Al
D ARl wm el
w0 T oplel+) T(F
L~ ]+ (/) el ~ ()
* 1 A i ¥
thus, by Lemma 1.1, the number of units is ( ?}TJ ) [T ) ‘ : ‘ ( ‘E}H) o i}
m i k[ k[ R 1
5 Alg], f factors as fPT o fir | hence —(-[f-)—] m[) ,]., 5 K e } , and each of
the local rings (;-j[)-r,',iij has & [),,], (1- Ik:‘” ) units, again by Lemma 1.1. O

The lemma may look technical but it handles the rings that come up in the
public key cryptographic system NTRU. Here, units occur in abundance:
COROLLARY 1.3. Let R = Zq[T]/(TN — 1) where ¢ = p" is a prime power
and N is such that the polynomial TN —1 factors over L, as a product of three
factors, TN —1 = fLfsfs, where fi = T —1 and where the two other irreducible
factors f, and f, are not equivalent and have the same degree.

1. The probability that a random element in R is a unit is

| R*| 1 1 :
= 1— - s 1——,-‘—— .
| R| P gyt

2. The probability that a random element f in R which satisfies the extra
condition that f(1) =1, is a unit is

* . - 2

LASUFOES YR,
[{f+ F(1) =1} ptN=17/:

3. Any non zero element f ¢ R which has a polynomial representative of

degree less than (N — 1)/2 and which satisfies the extra condition that
f(1) =1, is always a unit.

Proof. The first assertion is an application of Lemma 1.2. More directly,
by Lemma 1.1, an element in R is a unit if and only if its class in the factor
ring 7 [T] /(TN — 1) modulo p is a unit. As in Example 1, this ring decomposes
as a plodu(t of three fields, and we conclude that the number of units is as
stated. For the second assertion, note that the condition that f(1) =1 implies
that the map can; in Example 1 maps f to the class of 1 in Z [T]/(T —1).
There are exactly | R|/q elements in R which satisfy the condition, and the same
number of elements in R has the property that their class in Z [T]/(T—1) is 1
(indeed, there is exactly one value for the constant term so that the class of the
element is 1). Hence a bijection between R* N {f: f(1) = 1} and the product
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I 3 * *

(ﬂq{T]/(jg)) x (Z,[T)/(f;))" is given by the maps can, and ca'nj so our claim
is shown. Concerning the last assertion note that the condition f(1) = 1 ensures
that can,(f) is a unit while the degree requirement implies that also can,(f)
and can,(f) are units. So, f is a unit. 0

We now drop the assumption that A is a local ring.

PROPOSITION 1.4. Suppose A = |[A, is a product of local rings (A, ;)
with m,: A — A, the canonical projection onto the ith factor. Suppose that for
a monic polynomial f € Afz], the class @,(f) of f in ﬁﬂ factors as w,(f) =

Fir s f:‘ , where the polynomials f,; have degree deg f;; . Then
A['v]) . ‘( A,[z] )* 1 Alz] ( )
( (f) H (7:(1)) (f) H H B | lf’”

Proof. Suppose A = [[A,, then Alz] = [[A;[z] and an idna I C Alz]

has the form I = [J(INA,[z]); in particular if I = (f) where f = Z a; a with
j=0

Z(L and a;; € A, then m(f) = > azal and (f) = [1(7,(f)). Thus,
J

f
Ala N[ . c
Al H —A\ and the formula follows from Lemma 1.2 O
i ()
The following example shows that for iterated cyclic extensions, the number
of units can be computed by working from the inside out.

z
IXAMPLE 2. We compute the number of units in the ring 12 = (178[ iJ (—([;—f%]—)

We only use the following factorizations (see [2] and [3] for an account on fac-
toring cyclotomic polynomials): As seen in Example 1, the polynomial (7 — 1)
factors over Z, as (z + 1)(z* + 2 4+ 1)(x* + = + 1); the irreducible factors of
(y% —1) in Z, have degree as given in the formula 63 = 1 +2+2:3+9-6; the
same polynomial (y% —1) in Fy has 7 linear factors and 28 irreducible quadratic
factors, all pairwise non-equivalent. Thus

| (e s 1))*‘
o ((572[_.@]1) (yﬁ.gyl_ 1))**} (2] *
- |@thms) | (e —s) |

1((13?511 1) Uhg"] ])) ’ 02763
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|5 (c#%5)
(o) (2 (-3 (3

2. Units in NTRU and the message checksum

>
. 22-7-63

Ring units play a key role in the public key cryptographic system NTRU, and
in our internet application HERMES. In particular, we want to pick elements in
the domain

Zy[T)/(TY - 1)

which have a high probability of being a unit: First, the private key f itself has
to be a unit, more precisely, it has to be such that its class in two quotients is
a unit. Second, in the public key, one of the two units given by f is protected
in HERMES by multiplication by another unit. Next, a message is protected by
blinding it with the product of the public key and a unit. Finally, only a protected
version of the private key is stored. For protection in HERMES we multiply f by
a unit which is computed from a passphrase. In this section we recall quickly how
messages are encrypted in NTRU and point out that in the standard version of
NTRU, the checksum of a message is not protected; we describe how this problem
is settled in HERMES.

Notation. For ¢ a prime power, the canonical map modulo ¢, modq: 7 — 7 i
1s onto but not injective, so it has a right inverse, but this is not determined
uniquely. By sym, : Zq — % we denote the set map which which maps T € Zq to

the representative @ of Z in the interval (£, g] in Z . Clearly, sym_ is not a ring
map but it behaves like one whenever the arguments are “sufficiently small”. By
applying mod, and sym, to the cocflicients of the polynomials in the bounded

polynomial rings R = (J;?‘/"\‘;[i]” and Rq = {f{f[f]l) , where IV is a positive integer,

we obtain the maps
mod,: R = R, and sym,: R, — R.

We will choose many “small” elements from the subset R{d,d'} C R which
consists of those elements of i which have exactly d coeflicients equal to 1, d
coefficients equal to —1, and all the remaining coefficients zero. We will see that
it is essential for NTRU to work that sym, behaves like a ring map on certain
sums and products of small elements.
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EXAMPLE 3. Let ¢ > 4 be a prime power, and N > 3. For (z — 1), (2?> —z) €
R{1,1}, we have in Z[z]:
sym, modq((.’n = D{z?= z)) = 2} -2 4+
= sym, mod,(z — 1) - sym, 1nodq(.7;2 — ),
however for ¢ = 4, the left hand side evaluates to the polynomial with integral

coefficients x* + 222 + .
Let us recall quickly,

How and Why NTRU works.

A key in NTRU is made up from two elements, f € R{d f,d.’f} and g €
R{d,,d;}, such that the two classes of f in R, and in R are invertible el-
ements, so there are f; € Ry and f € R, such that mod,(f) - f5” =1 and
mod,(f) - f;7 = 1 hold. The private key is f; the public key is the product
h=3f; mod,(g) in R,.

Suppose that A wants to send the message m € R, to B. For the encryption,
A chooses a random polynomial » in R{d,,d,} and computes

e = mod, (symg(m)) + h- Hlﬂd;;("")

in R, using B’s public key h. She sends the encrypted message e to B.

B

-~

R

modsz W
Symg modg,

m € Ity Rqae
A

-

The decryption of e by B takes place in three steps. First, B elimninates the
“big” factor f.~ of his public key by computing d, = e mod,(f) in R, . We can
simplify the right hand side by using that mod : R — R, is a ring map, and
that f~-mod (f)=1.
d, = e-mod,(f)

= mod, (symy(m)) - mod,(f) + h - mod, (r) - mod, (f)

= mod, (symg(m) - f) +mod, (3gr) - f;” - mod (f)

= mod, (symy(m) - f + 3gr) .
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Next, B computes modulo 3: d, = mody(sym,(d,)). This is the critical step!
Indeed, encryption and decryption work only if the element z = symg,(m) -
f + 3gr computed in the first step is small in the sense that the equality
.L;},rmq(n'lodq(:r)) = x holds, that is that all the coefficients of the polynomial
symy(m) - f 4 3gr in R are in the interval (£, %} . Thus, we must have chosen
our parameters d, d’f, dg, d;, d,,d and ¢ insuch a way that the equality holds
at least with a large probability. If equality holds, we can simplify:

dy = mod, (sym, (d,))

I

mod, (squ (mod, (symgy(m) - f + 3g7)))
= mod,(symg,(m) - f + 3gr)

mod, (symy(m) - f)

=m-mod,(f).

Finally, we eliminate the factor f by computing in R,:
dy =dy - fy
=m-mod;(f) - f;
=m.

3. The checksum problem in NTRU

Each of the rings R, = Z [T/ (TN — 1) commonly used in the public key
cryptographic system NTRU is a product of at least two factor rings, given
by the factorization of TN — 1 = (T — 1)(TN=! + TN=2 4 ... 4+ 1). Namely,
R, =2Z[T]/(T-1)x Zq[T]/(TN*I +-+-41), where the first factor is isomorphic
to Z,, and the canonical map can,: R, — Z_ is given by taking the sum of the
coefficients of a polynomial representative of an element in R, that is, can;
returns the checksum modulo g.

Our motivation for studying NTRU and for experimenting with our own im-
plementation HERMES of NTRU is the following observation.

LEMMA 3.1. Let q, be the greatest common divisor
0 = ged{q, (d, — d_’g,) (d.—-d)},

and let for a message m € R,, c,, be the checksum of symg;(m), and c, =
can, (e) the checksum modulo q of the encrypted message. Then ¢, is congruent
to ¢, modulo g .

In particular, if d, = dj or d, = d; (as in the standard setup for NTRU)
then the checksum of the message modulo ¢ is not protected!
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Proof. As we are interested in £ only modulo ¢, we may replace ¢, by
)

G = B2 (m‘)dq (sym,(m))). Since can, is a ring map we have

¢, = €, = can, (e — mod, sym,(m))

can, (Inodq(sy1n3(m))
+3f; mod, (g) mod,(r) - (morlqsym;s(-m))
can, (3fq" mod,(g) modq(?‘))
= can,(3) - can, (f,") - can, (modq(g)) - can, (modq('f'))

= cany(3) - can, (f) - (d, - dy)«(d, = d,.)

q

where can, (3) and can,(f;) are or may be units in Z,. We obtain from the

calculation that ¢, divides ¢, — ¢/ and hence ¢, divides ¢, —c,,. O

Remark. I learned on the 33rd International Conference on Combinatorics,
Graph Theory and Computing (Boca Raton, 2002) that in commercial imple-
mentations of NTRU the checksum problem is avoided by “padding” the message
m with extra bits (or rather elements in Z;).

4. The Internet implementation HERMES

The main advantage of the cryptographic system NTRU is its speed. So
even in our implementation HERMES in the (interpreted!) computer language
JavaScript, high security levels can be attained when encrypting or decrypting
typed text on an internet browser. In this paragraph we describe the role of
ring units in the construction of the key, and in the protection of the key and
message.

In HERMES we choose N to be one of the numbers 71 (experimental), 191
(average security), 311 (high security), or 479 (very high security). Then the
polynomial T% —1 factors as a product of T'—1 and two further non-equivalent
irreducible polynomials of the same degree, both over Z, and Z,.

In order to construct polynomials f which have a high probability to be
units in k[T)/(TY — 1), where k = Z, or k = Zj, we use the Corollary after
Lemma 1.2. The extra condition that f, when evaluated at 7' = 1, has the
value 1, makes sure that the canonical map can, : k[T)/(TY —1) = k[T]/(T —1)
as in Example 1 maps f into a unit. Thus, the probability that a random
clement f satisfying f(1) = 1 is a unit is (1 — 2(,\,}7””)2 if k=%, and
(1- W)z if k = Z,. Such elements are in the set Z[T]/(T" — 1){d,, d’}
whenever d; —d; = 1.
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There are
N!
(N —d; ~ di )l d,;! d}!
elements in the set Z[7T/(TN — 1){d;, d}}, so the key length of f is given as
the base-2 logarithm of this number. Sufficient key lengths have to be chosen
1) for the private key f

2) for the protection g of f in the public key h =3 L U
3) for the protection r of the message m in e = m + hr, and

4) for the polynomial j computed from a passphrase used to protect the
stored version fj~ of the private key. In HERMES we put d} =d s — 1 and
d; = d; — 1 to make it likely that random elements J and j are units; also we
put d; =d,~1 and d. = d, —1 to avoid the checksum problem (see Lemma 3.1).

In conclusion, we see that the use of ring units is essential in the operation
of the public key cryptographic system NTRU. We consider it important to
understand this cryptographic tool well, in particular as it can be implemented,
tested, and used in a very flexible setup on the internet

o
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BOOK REVIEW

Nievergelt, Y.: FOUNDATIONS OF LOGIC AND MATHEMATICS. A[?'plma-
tions to Computer Science and Cryptography. Birkhéduser, Boston 2002, xii, 415
p. EUR 90.00; sFR. 136.00., ISBN 0-8176-4249-8.

The book gives the introduction to the foundations of lo.gic and nmthcp@tms
and computer science. There are considered the followil}gl issues and questlon.s:
why the truth table for logical implication is so 1.111int.ultwe, why there are no
recipes to design proofs, what issues in logic, mathematics, and computer science
still remain unresolved. o

The book treats not only theory, but also in some details applications that
have substantial impact on everyday life - for cxampl'c, financial loans and 1'1"10;'F-
gages, bar codes (Universal Product Codes), public-key cryptography (Rives-
Shamir-Adelman codes), and transportation networks. .

There are covered the following topics: truth tables, proplositional,l an.d predi-
cate calculi, set theory, theory and practice of basic arithmem?, cardinality, well-
formed sets, completeness and incompleteness of various logic, number thleor?f,
combinatorics, and graph theory. One of the key strengths of the pre‘sentatmn is
the continuous thread from theory to applications. So a material that is necessary
for logical coherence is found here.

The book consists of Preface, Outline and two main parts: A—Theory and
B—Applications. . |

The part A is divided into sections: 0 Boolean Algeh.r;uc Loglc, 1 I:JOgl(‘: anld
Deductive Reasoning, 2 Set Theory, 3 Induction, Recursion, Arithmetic, Cardi-
nality, 4 Decidability and Completeness. ) .

The part B is divided into sections: 5 Number Theory and Codes, 6 Ciphers,
Combinatorics, and Probabilities, 7 Graph Theory. . -

Every section ends with Projects, where some extensions of the preceding
results are formulated. . -

This book is both a text and a reference. It is the material convemen_t for
undergraduate courses for students majoring in ma‘r.hemgtlgs, clompulter sc1encaj
or computer information systems including students majoring in philosophy or
mathematical education. .

It also serves as an excellent self-study reference and resource for instructors
of courses in the above-mentioned arecas.
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